基于多天线FMCW雷达的人体行为识别方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金 (61771083, 61704015);长江学者和创新团队发展计划基金 (IRT1299)


Human action recognition based on multi-antenna FMCW radar
Author:
Affiliation:

Fund Project:

The National Natural Science Foundation of China (61771083); The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提出一种基于多天线调频连续波(frequency modulated continuous wave, FMCW)雷达的多参数融合神经网络(fusion neural network, FNN)人体行为识别方法。针对FMCW雷达参数估计算法角度分辨率不足以及在估计目标个数错误的情况下会降低精度的问题,提出一种结合最小功率无失真响应(minimum power distortionless response, MPDR)波束形成与快速傅里叶变换(fast Fourier transform, FFT)的距离-方位角参数联合估计算法。利用2个相互垂直的线阵雷达捕捉人体行为,使用参数联合估计算法估计人体目标各回波点在水平与垂直方向的距离、角度参数。构建FNN,从参数估计结果中提取并融合人体行为在水平与垂直方向的空间与时间特征,根据融合特征实现人体行为识别与分类。实验结果表明,FNN方法对人体行为识别的准确率相比传统三维卷积神经网络(3D convolutional neural networks, 3D-CNN)提升了4.37%。

    Abstract:

    In this paper, a multi-parameter fusion neural network (FNN) for human actions recognition based on multi-antenna frequency modulated continuous wave (FMCW) radar is proposed. First, in view of the shortcomings existing in FMCW radar parameter estimation algorithms, we develop a joint range-azimuth parameter estimation method combining minimum power distortionless response (MPDR) beamforming with fast Fourier transform (FFT), which provides higher angular resolution and overcomes the problem of the performance degradation that most of the super-resolution algorithms tend to have under unknown target number. Second, this method uses two mutually perpendicular linear array radars to capture human actions, and then the distance as well as angle parameters of the signal reflection position of human target in the horizontal and vertical directions are estimated. After that, FNN is constructed to extract and fuse the spatial and temporal features of human action in the horizontal and vertical directions from the parameter estimation results, based on which this method realizes human actions recognition and classification. The extensive experimental results show that FNN proposed improves the recognition accuracy by 4.37% compared with the traditional 3D convolutional neural networks (3D-CNN).

    参考文献
    相似文献
    引证文献
引用本文

田增山,杨立坤,付长友,余箭飞.基于多天线FMCW雷达的人体行为识别方法[J].重庆邮电大学学报(自然科学版),2020,32(5):779-787.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-07-05
  • 最后修改日期:2020-09-22
  • 录用日期:
  • 在线发布日期: 2020-10-15

微信公众号二维码

手机版网站二维码