网站首页 | 期刊介绍 | 编委会 | 投稿指南 | 在线订阅 | 联系我们 | 同行评议 | 出版声明 | 征稿English
钱小宇,葛洪伟,周竞,蔡明.基于扩容和双距离决策的多目标粒子群优化算法[J].重庆邮电大学学报(自然科学版),2020,32(3):368-376. 本文二维码信息
二维码(扫一下试试看!)
基于扩容和双距离决策的多目标粒子群优化算法
Multi-objective particle swarm optimization algorithm based on expansion and dual distance
投稿时间:2018-12-05  修订日期:2020-03-03
DOI: 10.3979/j.issn.1673-825X.2020.03.005
中文关键词:  多目标优化  粒子群优化算法  网格  差分变异  收敛性
English Keywords:multi-objective optimization  particle swarm optimization algorithm  grid  differential mutated  convergence
基金项目:国家自然科学基金(61305017);江苏省普通高校研究生科研创新计划(KYLX16_0781,KYLX16_0782);江苏省高校优势学科建设工程项目(PAPD)
作者单位E-mail
钱小宇 江南大学 江苏省模式识别与计算智能工程实验室,江苏 无锡 214122
江南大学 物联网工程学院,江苏 无锡 214122 
xynaruto@hotmail.com 
葛洪伟 江南大学 江苏省模式识别与计算智能工程实验室,江苏 无锡 214122
江南大学 物联网工程学院,江苏 无锡 214122 
ghw8601@163.com 
周竞 江南大学 物联网工程学院,江苏 无锡 214122 41752291@qq.com 
蔡明 江南大学 信息化建设与管理中心,江苏 无锡 214122 mcai@jiangnan.edu.cn 
摘要点击次数: 95
全文下载次数: 79
中文摘要:
      为了更好地改善多目标粒子群优化算法的收敛性和多样性,提出一种基于扩容和双距离决策的多目标粒子群优化算法。利用扩容的方法对目标空间中目标函数值的上下限进行扩大,得到新的上下限后再建立网格,这样可以计算出边界点的坐标。在小网格中选择引导粒子或者劣质粒子时,利用小网格中粒子到理想点和当前小网格最优点的距离进行决策筛选,这样充分利用目标空间中的信息来对粒子的优先级进行判断。对新的粒子进行差分变异,增加了整体的多样性,并通过阈值控制其变异的频率。将算法和当前具有代表性的多目标粒子群优化算法进行对比实验,提出的算法效果更佳。实验表明,提出算法的收敛性和多样性不仅得到较大提高,而且较为稳定。
English Summary:
      In order to improve the convergence and diversity of multi-objective particle swarm optimization algorithm, a new multi-objective particle swarm optimization algorithm based on expansion and dual distance is proposed. The main innovations of this paper are as follows: firstly,the upper and lower limits of the objective function value in the target space are expanded by the expansion, and after the grid is established by the new upper and lower limits, the coordinates of the boundary point can be calculated. Then, when selecting the leader or the inferior particles in a small grid,the decision is made by the two distances from the small grid to the ideal point and the current small grid. In this way, the information in the target space is fully utilized to judge the priority of the particles; Finally, the differential mutation of the new particles increases overall diversity and the frequency of their mutation is controlled by a threshold. The algorithm is compared with the current representative multi-objective particle swarm optimization algorithm, and the results show that the algorithm proposed in this paper is better than the comparison algorithm. Experiments show that the convergence and diversity of the proposed algorithm are not only improved, but also stable.
HTML    PDF浏览   查看/发表评论  下载PDF阅读器
版权所有 © 2009 重庆邮电大学期刊社  
地址:重庆市 南岸区 重庆邮电大学 期刊社 邮编:400065
电话:023-62461032 E-mail : journal@cqupt.edu.cn
meinv 海贼王论坛