网站首页 | 期刊介绍 | 编委会 | 投稿指南 | 在线订阅 | 联系我们 | 同行评议 | 出版声明 | 征稿English
李新春,王藜谚,王浩童.基于3DCNN的CSI-cluster室内指纹定位算法[J].重庆邮电大学学报(自然科学版),2020,32(3):345-355. 本文二维码信息
二维码(扫一下试试看!)
基于3DCNN的CSI-cluster室内指纹定位算法
CSI-cluster indoor fingerprint localization algorithm based on 3DCNN
投稿时间:2018-11-28  修订日期:2019-12-18
DOI: 10.3979/j.issn.1673-825X.2020.03.003
中文关键词:  室内定位  信道状态信息  多径效应  指纹子库  3维卷积神经网络
English Keywords:indoor localization  channel state information  multi-path effect  fingerprint sub-libraries  3 dimensional convolutional neural network
基金项目:国家自然科学基金(61372058)
作者单位E-mail
李新春 辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105 lixinchun@lntu.edu.cn 
王藜谚 辽宁工程技术大学 研究生院,辽宁 葫芦岛 125105 wangliyan9595@163.com 
王浩童 辽宁工程技术大学 研究生院,辽宁 葫芦岛 125105 784840790@qq.com 
摘要点击次数: 93
全文下载次数: 46
中文摘要:
      针对室内环境中复杂的多径效应影响定位精度问题,提出一种基于3维卷积神经网络(3 dimensional convolutional neural network,3DCNN)多径程度划分的自校准指纹定位算法。该算法利用MeanShift方法分析定位区域内每一个采样点的信道状态信息数据分布特性,得到其可代表多径效应程度的簇类数量,结合阈值原则将指纹库划分为2种不同多径程度的子库,从而减少多径程度差异较大的指纹点对后续定位影响利用3DCNN深度学习2类指纹子库。在定位阶段,根据校准算法判断待测数据所属子库,并采用相应的3DCNN模型估计位置。通过仿真实验验证,该方法在保证指纹库构建合理性和高效性的同时,在定位精度方面实现了明显的提升,优于与之对比的相关算法。
English Summary:
      Aiming at the problem of location accuracy in the multi-path effect of indoor environment, this paper proposes a multi-path degree division with self-calibration fingerprint localization algorithm based on 3 dimensional convolutional neural network (3DCNN). The algorithm uses the MeanShift method to analyze the data distribution characteristics of the channel state information of each sampling point in the location area, and obtains the number of clusters that can represent the degree of multipath effect.The fingerprint library is divided into two sub-libraries with different multipath degrees by combining the threshold principle, thereby reducing the influence of fingerprint points with large differences in multipath degree on subsequent positioning, and using 3DCNN to deeply learn two types of fingerprint sub-libraries;in the positioning stage,judging the sub-library to which the data to be tested belongs according to the calibration algorithm, and adopting corresponding 3DCNN model estimates the location. The simulation experiment proves that this method can achieve a significant improvement in positioning accuracy while ensuring the rationality and high efficiency of the fingerprint database construction. This method is better than the related algorithms.
HTML    PDF浏览   查看/发表评论  下载PDF阅读器
版权所有 © 2009 重庆邮电大学期刊社  
地址:重庆市 南岸区 重庆邮电大学 期刊社 邮编:400065
电话:023-62461032 E-mail : journal@cqupt.edu.cn
meinv 海贼王论坛